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This paper is concerned with the filling of an empty spherical bubble in 
a viscous liquid. The existence of two different types of motion is dis- 
covered: bubbles, which are smaller than a critical size, are filled 
slowly in an infinitely long time: the filling of large bubbles takes 
place rapidly with an unlimited accumulation af energy during collapse. 

A quantitative formula is obtained for the critical radius of the 
bubble. 

Assume that for some reason a bubble has formed inside the liquid, 
which in the future can again be filled under the action of the surround- 
ing pressure. The problem of the filling of a spherical bubble in an in- 
viscid incompressible liquid was studied by Rayleigh. He found, in par- 
ticular, that the velociJ:,;f motion of its surface towards the center 
grows indefinitely as r as the bubble completes the process of 
collapsing, i.e. an unlimited accumulation of energy takes place, This 

phenomenon is assumed to be a possible explanation for the rapid wear in 
screw propellers and turbines which operate under cavitation conditions. 
The collapse of bubbles at a metal surface can damage it severely. 

Now let us study the Rayleigh problem for the viscous liquid. Such a 
statement of the problem corresponds more nearly to the actual conditions, 
although it still does not give an accurate description of the pbenomeaon~ 
since it does not take into account the compressibility of the liquid, 
the inevitable presence of its vapor in the bubble and the possible in- 
stability of the slope of the bubble. 

Assume that a spherical bubble of radius Q was formed in a liquid of 
density p, pressure pe (far from the bubble) and viscosity rj. There is 
no pressure inside the bubble and the initial velocity is zero. 

The motion of the bubble will be spherically symmetric and can be de- 
scribed by the Navier-Stokes equations of the form 

1714 



The EOzzapse of hbbEts in a viscrm liquid 1715 

(0 

Here u(r, t) is the velocity, p(r, t) is the pressure. 

The visccrsity does not enter Equation (1) because in the general 

equations it occurs in the term 

which in our case is 

div u = 0, since the 

spherical symmetry. 

identically equal to zero. Thfs is SO because 

liquid is incompressible and rot II = 0 beC8USe of 

The normal stress u rr at the free surface of the bubble is zero (bound- 

11 (grad divu - rot rotu) 

ary with a vacuum), and since opr = - p $27 du/dr then 

i.e. the viscosity hss entered the boundarJr condition. Here and in the 

following, the index I denotes a V8lUe at the boundary. The second bound- 

ary condition is 

P = PO for r = 00 

From (1) we obtain 

(q (t) = W12) 

This is substituted into the second equation of (1)‘ integrated from 

'1 to 00, taking into account the boundary conditions on p, and after 
some simple calculations we obtain 

Here v is the kinematic viscosity. Let us introduce non-dimensional 

VarisbleS 

where R is the Reynolds number. Then Equation (2) becomes 
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The initial condition is of the form {(R) = 0 (i.e. uICa) = 0). As we 
see, the problem under study has a family of solutions which depends on 
the number R. One of them. R = m@ = 01, coincides with the Rayleigh so- 
lution. For this family, the velocity near the center grows as <- a-3/2. 

Let us study the behavior of the velocity near the center in the case 
of nonzero viscosity. For studying the value {‘I we gepresent Equation 

(3) in the form 

The point (a = 0, (- ’ = 0) for thts equation is a multiple singular- 
ity, shown in Fig. 1. 

The loci of the zeros and infinities are shown in Fig. 1 by means of 
heavy lines and identified by 0 and 00, whereas the integral curves are 
denoted by the light lines. The dot-dash line OA is the only integral 
curve which emanates from the origin with a finite slope. Its slope x is 
determined from (4) by substitution of the solution r- I = xa near d = 0, 
and it becomes x = l/S. The locus 03 of the zeros passes by lower; its 
slope is - 3/S. The integral curves above OA enter a node, where 4 ++ (iL3”. 
Below OA they represent & saddle where 

as a -+ 0. Both of these results are verified by. substitution in (4) with 
a + 0. The curve which corresponds to the solution is that which leads 
towards a point corresponding to the initial condition, i.e. a = If, 5 = 0, 

Fig. 1. Fig. 2. 

Generally speaking, for different numbers R the solutions may belong 
to different families: in the case of the node they correspond to an un- 
limited increase of the velocity 5 ~\r a- 3'2; in the case of the saddle 
point they correspond to a decelerated motion of the bubble with 4-a. 
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as a result of which its filling occurs only after an infinite time. 

In the intermediate case, which corresponds to the dividing line OA. 
the filling occurs after a finite time, and the velocity near the center 

grows as < c\, a- ‘. The Reynolds number corresponding to the dividing 

line is the critical Reynolds Number. It separates two fundamentally 

different classes of solutions. Its critical value R = R+ can be deter- 

mined by constructing the separatrix from a = 0 (near that Point its 
asymptotic representation is known: 5 = - l/8 a- ‘) to 4 = 0, where 
a = R. Its construction, which is accomplished with the aid of numerical 

integration (3). yields 

For R .< 8.4 the filling of the bubble takes place slowly in an in- 
finitely long time. The accumulation of energy is completely dissipated 
by the viscosity. 

For R > 8.4 the velocity near the focus grows indefinitely as in the 
Rayleigh problem (without viscosity), i.e. as const rIW3’*, but with a 
smaller value of 1 const 1 . In the interim case for R = 8.4 the bubble is 
filled in finite time, and the velocity of the focus+ grows indefinitely, 
but more weakly, as rl-l. 

The schemes of all three cases of motion are shown in Fig. 2. For 
given po, p and Y one can speak of a critical radius a* of the bubble 

For a < a* the energy accumulation IS completely dissipated by the 
viscosity. 

The velocity at the end of the filling of small bubbles 

does not depend on the density and on their initial radius a. In practice, 
the critical radius a_ is very small. i.e. the viscosity dissipates the 
accumulation only in 

PO = 1 atm = lo6 bar 
glycerin (V = 6.8, p 

bubbles of very small size; for instance, for 
in water (V = 0.01, p = 1) a* = 0.8 micron, and in 
= 0.8) a* = 0.5 mm. 

Translated by M.I.Y. 


